A Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks

نویسندگان

  • REZWAN AHMED
  • GEORGE KARYPIS
چکیده

Computational methods and tools that can efficiently and effectively analyze the temporal changes in dynamic complex relational networks enable us to gain significant insights regarding the entity relations and their evolution. This paper introduces a new class of dynamic graph patterns, referred to as coevolving relational motifs (CRMs), which are designed to identify recurring sets of entities whose relations change in a consistent way over time. Coevolving relational motifs can provide evidence to the existence of, possibly unknown, coordination mechanisms by identifying the relational motifs that evolve in a similar and highly conserved fashion. We developed an algorithm to efficiently analyze the frequent relational changes between the entities of the dynamic networks and capture all frequent coevolutions as CRMs. Our algorithm follows a depth-first exploration of the frequent CRM lattice and incorporates canonical labeling for redundancy elimination. Experimental results based on multiple real world dynamic networks show that the method is able to efficiently identify CRMs. In addition, a qualitative analysis of the results shows that the discovered patterns can be used as features to characterize the dynamic network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Coevolving Induced Relational Motifs in Dynamic Networks

A fundamental task associated with the analysis of a dynamic network is to study and understand how the network changes over time. Co-evolution of patterns, where all the relations among a set of entities change in a consistent way over time, can provide evidence of possibly unknown coordination mechanism among the entities of a dynamic network. This paper introduces a new class of dynamic netw...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Automatic Discovery of Technology Networks for Industrial-Scale R&D IT Projects via Data Mining

Industrial-Scale R&D IT Projects depend on many sub-technologies which need to be understood and have their risks analysed before the project can begin for their success. When planning such an industrial-scale project, the list of technologies and the associations of these technologies with each other is often complex and form a network. Discovery of this network of technologies is time consumi...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014